Role of P450 monooxygenases in the degradation of the endocrine-disrupting chemical nonylphenol by the white rot fungus Phanerochaete chrysosporium.
نویسندگان
چکیده
The white rot fungus Phanerochaete chrysosporium extensively degraded the endocrine disruptor chemical nonylphenol (NP; 100% of 100 ppm) in both nutrient-limited cultures and nutrient-sufficient cultures. The P450 enzyme inhibitor piperonyl butoxide caused significant inhibition (approximately 75%) of the degradation activity in nutrient-rich malt extract (ME) cultures but no inhibition in defined low-nitrogen (LN) cultures, indicating an essential role of P450 monooxygenase(s) in NP degradation under nutrient-rich conditions. A genome-wide analysis using our custom-designed P450 microarray revealed significant induction of multiple P450 monooxygenase genes by NP: 18 genes were induced (2- to 195-fold) under nutrient-rich conditions, 17 genes were induced (2- to 6-fold) in LN cultures, and 3 were induced under both nutrient-rich and LN conditions. The P450 genes Pff 311b (corresponding to protein identification number [ID] 5852) and Pff 4a (protein ID 5001) showed extraordinarily high levels of induction (195- and 167-fold, respectively) in ME cultures. The P450 oxidoreductase (POR), glutathione S-transferase (gst), and cellulose metabolism genes were also induced in ME cultures. In contrast, certain metabolic genes, such as five of the peroxidase genes, showed partial downregulation by NP. This study provides the first evidence for the involvement of P450 enzymes in NP degradation by a white rot fungus and the first genome-wide identification of specific P450 genes responsive to an environmentally significant toxicant.
منابع مشابه
Biological Removal of Dibenzothiophene from Soil and Changes to soil Sulfate by White-Rot Fungus Phanerochaete chrysosporium
This study investigated biodegradation of dibenzothiophene (DBT) in marsh soil spiked bywhite-rot fungus Phanerochaete chrysosporium. Soil samples were spiked with 100 ppm DBTand incubated at 30°C in a dark chamber for 30 days. Samples were evaluated for pH, Mnperoxidaseactivity, sulfate ion concentration and growth during the tests. Results showedmaximum levels of pH, Mn-peroxidase and sulfate...
متن کاملA Fungal P450 (CYP5136A3) Capable of Oxidizing Polycyclic Aromatic Hydrocarbons and Endocrine Disrupting Alkylphenols: Role of Trp129 and Leu324
The model white rot fungus Phanerochaete chrysosporium, which is known for its versatile pollutant-biodegradation ability, possesses an extraordinarily large repertoire of P450 monooxygenases in its genome. However, the majority of these P450s have hitherto unknown function. Our initial studies using a genome-wide gene induction strategy revealed multiple P450s responsive to individual classes ...
متن کاملP450ome of the white rot fungus Phanerochaete chrysosporium: structure, evolution and regulation of expression of genomic P450 clusters.
The model white rot fungus Phanerochaete chrysosporium has the extraordinary ability to degrade (to CO(2)) lignin and detoxify a variety of chemical pollutants. Whole genome sequencing of this fungus has revealed the presence of the largest P450ome in fungi comprising approx. 150 P450 genes, most of which have unknown function. On the basis of our genome-wide structural and evolutionary analysi...
متن کاملDecolorization of Molasses Waste Water from an Alcoholic Fermentation Process with Phanerochaete Chrysosporium Involvement of Ligninase
Waste water from a molasses alcoholic fermentation plant (MWW) was treated biologically with Phanerochaete chrysosporium. The ability of this white-rot fungus to degrade the dark colored pigments present in MWW and the consequent decrease the effluent's color was examined. The Optimum concentration of MWW for color removal was determined and set at the ratio of 1:10. The color changes durin...
متن کاملInvolvement of Cytochrome P450 in Pentachlorophenol Transformation in a White Rot Fungus Phanerochaete chrysosporium
The occurrence of cytochrome P450 and P450-mediated pentachlorophenol oxidation in a white rot fungus Phanerochaete chrysosporium was demonstrated in this study. The carbon monoxide difference spectra indicated induction of P450 (103±13 pmol P450 per mg protein in the microsomal fraction) by pentachlorophenol. The pentachlorophenol oxidation by the microsomal P450 was NADPH-dependent at a rate ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied and environmental microbiology
دوره 75 17 شماره
صفحات -
تاریخ انتشار 2009